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Abstract--Published models for particle diffusion coefficients are usually only applicable for small particles 
because they make assumptions that are not valid for larger particles, e.g. that Stokes law is valid, that 
gravity may be neglected or that the particle response time is less than the timescale of the turbulence. 
Nevertheless, there are situations where the dispersion of particles > 100/~m dia by a turbulent flow can 
be an important effect. In this paper it is shown that for particles ~> I00 #m the equations for the particle 
diffusion coefficient reduce to a very simple form. It is also shown that the resulting equation gives good 
agreement with the results of numerical simulations. 
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1. I N T R O D U C T I O N  

The motion of solid particles or liquid droplets in a turbulent gas flow is a problem which has 
many practical applications, e.g. pneumatic conveying, spray drying and annular mist flow in 
pipelines and boiler tubes. Although the physics of the particle-turbulence interaction is reasonably 
well understood, it has not yet proved possible to formulate a general theory describing the 
dispersion of a particulate phase under the influence of a turbulent flow field, even for the relatively 
simple case of dilute suspensions where the influence of the particles on the gas phase may be 
neglected. 

Numerical simulations of the dispersion of an ensemble of particles, in which the trajectory 
of each particle is calculated as a series of interactions with discrete pseudo-random 
turbulent eddies ("random walks") are relatively easy to implement, but are often costly and 
time-consuming because a large number of particles must be modelled. Nevertheless, this 
"Lagrangian" approach can be a very valuable research tool. Examples of its use are the studies 
of Brown & Hutchinson (1979), James et al. (1980), Boysan et al. (1982), Weber et al. (1984) and 
Gouesbet et al. (1987). 

The alternative ("Eulerian") approach, which has received much more attention in the literature, 
is to consider the particle dispersion as a diffusion process with an appropriate particle diffusion 
coefficient. In situations with a simple geometry and a constant diffusion coefficient the diffusion 
equation may be solved analytically. In more complex situations the diffusion coefficient will be 
a function of position and the solution will usually be obtained by incorporating the diffusion 
coefficient in a two-fluid model. However, in spite of the extensive literature on the subject, no 
general method exists for predicting particle diffusion coefficients. 

Taylor (1921) showed that for a stationary process in a homogeneous turbulence, the long-time 
particle diffusion coefficient may be expressed as 

l d  
E. = -~ Tt ( x " ( t ) 2 )  = ( u ~ ) ~ . ,  [11 
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where Xp(t) is the total displacement of the particle, (u~)is the mean square particle fluctuating 
velocity and Zp is the integral timescale of the particle motion, given by 

Zp = Rp(O) dO, [2] 

where Rp(O) is the particle autocorrelation, given by 

(up(t)up(t + 0))  
Rp(0)  = 

In general, both (u 2 ) and Zp are unknown but by making some simplifying assumptions several 
authors have derived methods for calculating %. For example, Ganic & Mastanaiah (1981) assumed 
a linear (Stokes) drag law (strictly applicable only for particle Reynolds numbers Rep < 1) and were 
able to calculate the ratio 2 2 up/uo. This ratio was assumed equal to the ratio of the particle diffusivity 
to the gas diffusivity, and so the model is valid only for diffusion times much less than the gas 
integral timescale 3G. The analysis was later extended by EI-Kassaby & Ganic (1986) to R% < 5. 
A recent model by Lee & Wiesler (1987) made the same assumptions but calculated the amplitude 

2 2 ratio r /=  Up/U G in a different way. McCoy & Hanratty (1978) also used Stokes law but extended 
the analysis to nonstationary dispersion. 

Reeks (1977) also assumed a linear drag law but allowed that Zp ¢: zo and obtained analytic 
solutions for the diffusion coefficient with and without the effect of gravity. In the zero-gravity case 
it was shown that % may be greater than Ec [in agreement with the findings of Brown & Hutchinson 
(1979) from a simulation], but it was also shown that the effect of gravity (known as the 
"crossing-trajectories" effect) is to greatly reduce %. 

In the model of Hutchinson et al. (1971) the diffusion coefficient was calculated using a 1-D 
random-walk, in which case 

= x ,  , [31 

where the x~ are the individual displacements in the random-walk. Assuming ( x i x j )  = 0 if i C j  
(equivalent to saying that ~p = T~), this gives 

= vt<x ), 

where v is the interaction frequency. 
Thus, 

1 d 1 v (x~)  [4] 

which is the equation given by Hutchinson et al. In this model a non-linear drag law was used but 
the crossing-trajectories effect was neglected. 

The purpose of the work described in this paper is to present a method of calculating the diffusion 
coefficient for larger particles (~> 100/~m) which do not obey Stokes drag, have a long relaxation 
time (so Zp > TG) and are strongly influenced by gravity. The analysis presented here is restricted 
to vertical flow. Particles of this size may occur in practice in annular-mist flow in pipes, spray 
drying, prilling and the motion of raindrops. The work described here is concerned mainly with 
long-time behaviour. In some real systems the residence time of the particles may be less than the 
time necessary for these large particles to achieve long-time behaviour, but it is felt that an 
understanding of such behaviour is a necessary prerequisite to understanding the behaviour in 
developing systems. 

It is shown that for such particles the equation for the diffusion coefficient can be reduced to 
a very simple form. The predictions of this equation are compared with a numerical simulation 
and with the methods of Reeks (1977) and Hutchinson et al. (1971). 
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2. THEORY 

2.1. Equation of  motion 

For particles which are sufficiently heavy that virtual mass and Basset history forces may be 
neglected, the drag equation may be written as 

dUp 1 nd~ 
mp ~ -  = Co ~ Pc -~-  (UG -- Up)] UG -- Up 1, [5] 

where Uc = (uG, vG, we) and Up = (up, v o, wp) are the gas and particle velocities, mp and d o are the 
particle mass and diameter, Pc is the gas density and CD is the drag coefficient. In this work Co 
is calculated using the equation suggested by Brown (1978): 

24 
Co - Reep + 0.44 [6] 

In figure 1 this equation is compared with the standard curve given by Clift et al. (1978) and shown 
to give reasonable results. However, the use of this drag equation is not essential and in fact any 
suitable equation could be used. 

For large particles in a vertical gas flow the settling velocity Awv is generally greater than the 
gas turbulence velocity Ue and thus, 

lUG - Up [ - AwT 

for particles which have reached long-time behaviour. Equation [5] thus gives, for motion in the 
horizontal plane, 

dup 1 rtd2p 
mp ~ = Co ~ PG T (UG -- Up) AWT, [7] 

where C O = Co(Rep) with Re v = Po Awvdp/Iz~. According to the model of Hutchinson et al. (1971), 
uc may be taken as + ue and [7] may be integrated to give the dimensionless particle velocity 

V = _+ 1 - (+  1 - V0)exp(- [3t), [8] 

where V = Up/Ue and [3, the inverse particle relaxation time, is given by 

3 C o PG AWT. 
[ 3 - 4  dp pp 

In a random-walk model, u~ is assumed constant during each particle-eddy interaction. For large 
particles, the interaction time t~ is always the crossing due to gravity, i.e. 

ti = 4/Awv, 

and 

={uJoyA 
(X,X,_r) \AWT} 2 exp(--rA) 

= (x  2 )exp( -- rA ), 

[9] 

[10]  

where le is the eddy lengthscale. 

2.2. Particle autocorrelation 

By writing [8] as a recurrence relation, 

V , = _ I - ( + I -  V, l)exp(--A), 

where A = flle/Aw T, Govan (1986) showed that, provided A <~ 1 (i.e. the particle relaxation time 
1/[3 is much greater than the interaction time lo/AWx), then 

A 
(V,V,_~)  = ~ e x p ( - r A )  

= ( V 2 ) e x p ( -  rA ) 
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where x, is the particle displacement during the n th interaction. Setting 0 = rt~ = rl c law v gives the 
autocorrelation Rv (0) = exp(-/~0) and % = 1//~ which is consistent with the idea that large particles 
are in an essentially Eulerian frame of reference. 

2.3. Particle diffusion coefficient 

Following the random-walk approach of Hutchinson et al. (1971), 

= x ,  [3] 

= 2 X i X i _  r 
i I r = 0  

N 

= 2N ~" (x ix i  r)  
r = O  

(provided N is large and (x~) is constant) 

N 

= 2 N  ~ ( x ~ ) e x p ( - r A )  
r = 0  

(using [10]) 
~u 

2 N ( x ~ )  J0 e x p ( - A r ) d r  

A w T ( x ~ )  1--exp 
- 2 T  A to 
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(since N, the total number of  interactions, = vt) 

_ u~let [1 -- exp(--flt)] 
Aw T 

since 

(x2 )  = \A-~wrJ E ([10]). 

Thus the long-time particle diffusion coefficient, E~ is given by 

1 d ( X ~ ) =  u ~ l ,  

e~ = 2 dt 2 Aw----~" 

Equation [12] may also be obtained directly from [1] using the results 

1 
T p ~ f l  

and [9], 

[ll] 

[121 

A 2 
= (V2)u  = 5 u o .  

Equation [12] is also in agreement with the results derived by Friedlander (1957) for a linear drag 
law: 

2 RGp(O) dO 2 [131 Coo ~ U e ~ UeTGp , 

where the correlation RGp(0) represents the correlation of  the fluid velocity at one point with the 
fluid velocity experienced by the particle. Although a non-linear drag law is used in this paper, the 
drag coefficient is assumed to depend only on the particle settling velocity and is therefore constant 
for a given particle, so Friedlander's result applies. Equation [13] can be seen to agree with [12] when 
it is recognized that ~Cp = l~/2 AWT, i.e. the integral timescale is one-half of the interaction time. 

It is also worth noting that using the above analysis the equation of  Hutchinson et al. [4], gives, 
for large particles, 

A u21e [14] 
E~ - 4 AWT' 

which underpredicts the particle diffusion coefficient by a factor of 2/A. 

3. R ESULTS AND D I S C U S S I O N  

3.1. Comparison with numerical simulation 

The analysis given in section 2 contains several important assumptions and simplifications which 
are strictly valid only for "infinitely" heavy particles. To assess the accuracy for particle sizes of  
practical interest, the predictions have been compared with particle dispersion rates calculated from 
numerical simulations. 

In the simulations the turbulence is 3-D, homogeneous and isotropic, with a single lengthscale 
le and a Gaussian distribution of velocities with an r.m.s, value ue in each direction. Particle 
trajectories were calculated using [5] and [6]. The velocity difference l U G -  Upt was not set equal 
to AwT but was assumed constant during each interaction. This is reasonable since the interaction 
time [given by t~ = Io/(WG -- Wp)] is small and the particle inertia is high. For each set of  conditions 
1000 particles were used and ( X  2) was calculated as a function of  time (since the calculation was 
isotropic the same results would be obtained using (Y2) .  

The gas is air (Pc = 1.2 kg/m 3, #o = 0.000018 Ns/m 2) with ue = 1.05 m/s. The simulations were 
carried out with particles of 100-500 #m dia, density 2600 kg/m 3 (glass) and 1000 kg/m 3 (water) and 
l~ = 0.00352 and 0.0352m (which are typical of the eddy sizes found in pipes of  0.032 and 
0.32 m dia, respectively). Rep varied between 5 and 160. 
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Figure 2 shows the values of <X~ > for 250/~m glass particles, calculated from [11] and compares 
them with those obtained from a simulation in which the particles initial velocities are close to their 
long-time values. It is clear that although <u 2 > has a constant value, the diffusion coefficient is 
initially low and reaches a constant value (corresponding to a linear relationship between <X 2 > 
and t) after about 0.3 s, suggesting that the timescale % requires a "development time". Both the 
long-time behaviour and the developing region are quite well predicted by [11]. 

Figure 3 shows the long-time diffusion coefficients predicted by [12] as a function of particle size 
and compares them with values obtained from the simulation. The agreement is good except for 
the smaller particles (dp ,,~ 100/~m, i.e. Re < 10), indicated by the encircled symbols, where the 
assumption AWT > ue was no longer valid. The agreement with the results for the larger scale 
turbulence are also slightly poorer because the assumption A ,~ 1 is a poorer approximation. 

3.2. Comparison with the model of Hutchinson et al. (1971) 

Figure 4 compares the results for the 250/~m glass particles with the values calculated using the 
model of Hutchinson et al. ([4]) with the drag coefficient given by [6]. The model as published, 
neglecting the crossing-trajectories effect, underpredicts e~ by about an order of magnitude and 
predicts too rapid a decrease with increasing particle size (because the increase in % is ignored). 
With the inclusion of the crossing-trajectories effect, the predictions are two orders of magnitude 
too low, in agreement with [14]. 

3.3. Comparison with the calculations of Reeks (1977) 

Since Reeks (1977) used a Stokes drag law in his calculations they are not applicable to the large 
particles discussed in this paper. However, there is a small overlap in the range of conditions 
covered so some of Reeks results are shown here (in figure 5) for comparison. The results are 
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presented in dimensionless form and the line representing Reeks calculations was estimated by 
interpolating Reeks results. Rather surprisingly, the Reeks model agrees quite well with the 
simulation and with [12] over a limited range of conditions. It appears, however, that for 1/fl* > 10 
the Reeks model predicts that E* falls too slowly with increasing 1/fl*. 

4. CONCLUSIONS 

It was shown that for large particles (dp > 100 #m, Rep > 10) in a vertically flowing turbulent 
gas, the equations for the particle diffusion coefficient reduce to a very simple form [12], consistent 
with a Eulerian frame of  reference. It was also shown that provided the assumptions 

(AWT) 2 >~ U 2 

and 

fll~/Awv ~. 1 

are valid, this simple equation is in good agreement with the results of  numerical simulations of 
the dispersion of glass particles and water droplets. 

Published models such as those of  Reeks (1977) and Hutchinson et al. (1971) are usually derived 
from small particles, and were found to underpredict the particle diffusion coefficient for larger 
particles by orders of  magnitude because their inherent assumptions that zp = zc or that Stokes law 
is valid introduce gross errors. 
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